
A. E BRIGAS, E M. GONCALVES AND R. A. W. JOHNSTONE 251 

A c t a  Cryst. (1998). C54, 251-253 

Electronic Effects on C m O m C  Ether 
Bonds in 3-Aryloxy Derivatives of Benziso- 
thiazole 1,1-Dioxides: Rapid Ethanolysis of 
3-(4-Nitrophenoxy)- 1,2-benzisothiazole 
1,1-Dioxide, (1), to give 3-Ethoxy-l,2-benz- 
isothiazole 1,1-Dioxide, (2) 

AMADEU F. BRIGAS, a PEDRO M. GONCALVES a AND 
ROBERT A. W. JOHNSTONE b 

~UCEH, Campus de Gambelas, Universidade do Algarve, 
8000 Faro, Portugal and bDepartment of Chemistry, 
University of Liverpool Liverpool L69 3BX, England. 
E-mail: rjO5 @ liverpool.ac.uk 

(Received 8 April 1997; accepted 14 October 1997) 

and much more susceptible to nucleophilic attack than 
the other C atom of the ether linkage [e.g. CI'  in (1)] 
(Alves et al., 1997). EEM (electronegativity equalization 
method) and Gaussian calculations provide support for 
this supposition (Alves, 1996). To test this hypothesis 
experimentally, two aryloxy derivatives, (1) and (3), of 
benzisothiazole 1,1-dioxide were refluxed with ethanol. 
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Abstract 
The bond lengths in the central C - - O - - C  ether link- 
age of title compound (1), Cl 3H8N2OsS, are comparable 
with those found in earlier work on similar compounds. 
However, (1) was found to undergo very easy solvolysis 
with ethanol to give (2), C9H9NO3S, for which a struc- 
ture was also determined, but 3-(4-methoxyphenoxy)- 
1,2-benzisothiazole 1,1-dioxide, (3), did not hydrolyse 
under the same conditions. If ground-state structures are 
important for solvolysis, these results suggest that there 
should be a difference in the corresponding C- -O bond 
lengths for the ethers (1) and (3). Such differences are 
not observed. The results can be rationalized by sup- 
posing that transition-state energies for ethanolysis are 
more important factors than those of the ground state. 

Comment 
It has been argued that bond lengths can be directly 
correlated with reactivity (Edwards et al., 1986). Aryl- 
oxy derivatives of 5-phenyltetrazole and benzisothia- 
zole 1,1-dioxide have been shown to possess unusual 
C - - O - - C  ether bonds, in which one C- -O bond to 
the aryl group is exceptionally long and the other C -  
O bond to the heteroaromatic system is exceptionally 
short (Brigas & Johnstone, 1996; Alves et al., 1996, 
1997). Typically, the long single bond has a bond order 
n < 1 and the short single bond has a bond order 
n = 1.3-1.4. Partly for these reasons, oxidative addition 
during catalytic hydrogenolysis occurs across the weaker 
longer bond, such that the aryloxy derivatives give high 
yields of arenes (Brigas & Johnstone, 1990; Alves et al., 
1997). However, for nucleophilic attack on the same 
aryloxy ethers, it could be expected that the C atom 
of the C n O - - C  bond which lies in the heteroaromatic 
system [e.g. C3 in (1)] would be positively charged 

Compound (1) contains an electron-withdrawing nitro 
group in the para position, while compound (3) contains 
an electron-donating methoxy group in the para posi- 
tion. With ethanol, compound (1) was converted very 
rapidly into the ethoxy compound (2), but compound 
(3) was unchanged at the same temperature when re- 
fluxed for a considerably longer time. Thus, nucleo- 
philic displacement of 4-nitrophenol [(4), R = NO2] 
from ether (1) by ethanol was easy and gave the ethyl 
ether (2). Similar displacement of 4-methoxyphenol [(4), 
R - OCH3] from ether (3) did not occur. The effects 
are comparable with those observed for aryl trifluoro- 
methanesulfonates (Zhu et al., 1997). The results might 
be rationalized by invoking a double action from two 
strongly electron-withdrawing effects at C3 of ether (1), 
one due to the 4-nitrophenoxy group and the other due 
to the 'electron-deficient' heteroaromatic system. In the 
case of ether (3), the 4-methoxyphenoxy group would be 
expected to offset the electron-withdrawing heteroaro- 
matic system, thereby reducing the charge density at C3 
of the heteroaromatic system and making nucleophilic 
attack more difficult. With this explanation, nucleophilic 
attack by ethanol would be expected to be easier for the 
more electropositive C3 atom in ether (1) but would 
be more difficult for C3 in ether (3). It would be ex- 
pected that these same effects should cause a difference 
in the relative C--O---C bond lengths in compounds 
(1) and (3), since bond length is related to reactivity 
and electronegativity (Peter, 1986). However, compari- 
son of the ether bond lengths reveals no significant dif- 
ferences in ethers (1) or (3). Thus, for these two ethers, 
the pairs of ether C- -O  bond lengths are 1.335 (3) and 
1.417 (3) A (this work), and 1.331 (3) and 1.424 (3),~, 
respectively (Brigas & Johnstone, 1996), suggesting that 
the opposite electronic effects of the nitro and methoxy 
groups actually have no opposed effects on the C----O-- 
C ether bond lengths or angles. If an explanation for 
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easy solvolysis cannot be found in ground-state elec- 
tronic features in ethers (1) and (3), then the transition- 
state structures (5) must be important.  In a fully devel- 
oped SoAr transition state [(5), R = NO2], a resonance- 
stabilized 4-nitrophenol provides a far better leaving 
group than does a resonance-destabilized 4-methoxy- 
phenol [(5), R = OCH3], suggesting that the transition- 
state energy for solvolysis is significantly greater for 
the ether (3) than for (1) and that the different rates of  
solvolysis are due mostly to this factor. 

The ethoxy ether product of  solvolysis (2) has C - -  
O - - C  ether bond lengths in keeping with those expected 
for such a compound having an sp3-C atom in place 
of  C I '  (BarNey et al., 1997). Therefore, the product 
of  solvolysis is not expected to enhance or diminish 
any differences found in the transition- or ground-state 
energies for ethers (1) or (3). 

04 
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! 

Fig. 1. Perspective view of (1) showing 50% probability displacement 
ellipsoids. 

6.62 (4H, m, ArH), 7.42 p.p.m. (2H, d, J = 9.7 Hz, ArH). 
MS: mlz 304 (M+). IR Vmax: 1554, 1531, 1378, 1353, 1175 
and 855 cm -1. Analytical data for 3-ethoxy-l,2-benzisothia- 
zole 1,1-dioxide, (2), and 3-(methoxyphenoxy)-l,2-benziso- 
thiazole 1,1-dioxide, (3), have been published recently (Alves 
et al., 1997; Brigas & Johnstone, 1996). For solvolysis stud- 
ies, the ether, (1) or (3), was refluxed in a large relative molar 
excess of ethanol. Within 30 min, the ether (1) had been con- 
verted into the ethoxy compound (2) in a yield close to 100%. 
In contrast, after 5 h of reflux in ethanol, the ether (3) gave 
no evidence for formation of the ether (2) and was recovered 
unchanged. 

Compound (1) 
Crystal data 

CI3HsN2OsS Mo Ko~ radiation 
Mr = 304.27 A = 0.71073 ]k 
Orthorhombic Cell parameters from 25 
Pbca reflections 
a = 13.803 (3) ,4, 0 - 10.2-19.1 ° 

o 

b = 10.780(16)0A # = 0.276 m m  -1 

c = 17.272 (7) A T = 293 (2) K 
V = 2570 (4) ]k 3 Prism 
Z = 8 0.30 x 0.30 x 0.30 mm 
Dx = 1.573 Mg m -3 Colourless 
D,, not measured 

Data collection 
Rigaku AFC-6S diffractom- 

eter 
w-20 scans 
Absorption correction: none 
2256 measured reflections 
2256 independent reflections 
1552 reflections with 

I > 2o'(/) 

0max = 24.95 ° 
h =  - 1 6 - - - ' 0  
k = 0 --, 12 
l =  0--+ 20 
3 standard reflections 

every 150 reflections 
intensity decay: none 

C61 

C3 

C9 
O1 

C4 ~ , ~  C2 

Fig. 2. Perspective view of compound (2) showing 50% probability 
displacement ellipsoids. 

E x p e r i m e n t a l  

3-(4-Nitrophenoxy)- 1,2-benzisothiazole 1,1-dioxide, (1), was 
prepared from pseudosaccharyl chloride and 4-nitrophenol ac- 
cording to a method described previously (Brigas & Johnstone, 
1990). M.p. 519-520 K. Elemental analysis: found C 52.0, 
H 2.9, N 8.7%; CI3HsNOsS requires C 51.3, H 2.7, N 9.2%. 
IH NMR [(CD3)2SO]: 6 8.20 (2H, d, J = 9.7 Hz, ArH), 7.82- 

Refinement 

Refinement on F z 
R[F 2 > 2o.(F2)] = 0.039 
wR(F 2) = 0.107 
S = 1.023 
2256 reflections 
191 parameters 
H atoms treated by a 

mixture of independent 
and constrained refinement 

w = l/[o.2(Fo 2) + (0.033P) 2 
+ 1.37P] 

where P = (Fo 2 + 2F~)/3 

(m/o.)max = 0.001 
Apmax = 0.24 e/~-3 
Apmin = -0 .30 e ,~-3 
Extinction correction: 

SHELXL97 (Sheldrick, 
1997) 

Extinction coefficient: 
0.0024 (4) 

Scattering factors from 
International Tables for 
Crystallography (Vol. C) 

Table 1. Selected geometric parameters (A, o) for  (1) 
SI--NI 1.664 (2) C1----C8 !.477 (3) 
S1---C9 1.766 (3) C2----C3 1.364 (4) 
O1---CI 1.335 (3) C2----C7 1.371 (4) 
O1----C2 1.417 (3) C8---C9 1.381 (4) 
N I---C I 1.279 (3) 

NI--SI----C9 96.24 (13) C3---C2---C7 122.7 (3) 
C1---O1---C2 118.7 (2) C3--C2--O1 117.5 (3) 
CI- -NI- -SI  108.40 (18) C7--C2---O1 119.7 (2) 
N I---CI--OI 124.4 (2) C9---C8--C1 108.8 (2) 
N 1---C1----C8 119.3 (2) C8---C9--S! 107.24 (19) 
O1--C1---C8 i 16.3 (2) 
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Compound (2) 
Crystal data 

C9H9NO3S 
Mr = 211.23 
Monoclinic 
P21/n 
a = 7.149 (4) ,~, 
b = 8.178 (5) ,~, 
c = 16.556 (3) ,~, 
/~ = 93.15 (3) ° 
V = 966.5 (8) A, 3 
Z = 4  
Dx = 1.452 Mg m -3 
Dm not measured 

Data collection 
Rigaku AFC-6S diffractom- 

eter 
a;-20 scans 
Absorption correction: none 
1699 measured reflections 
1699 independent reflections 
1133 reflections with 

I > 2tr(/) 

Refinement 

Refinement on F 2 
R[F 2 > 2or(F2)] = 0.044 
wR(F 2) = 0.108 
S = 1.025 
1699 reflections 
127 parameters 
H atoms treated by a 

mixture of independent 
and constrained refinement 

Mo Ka radiation 
A = 0.71073 ~, 
Cell parameters from 25 

reflections 
0 = 3.5-7.4 ° 
# = 0.314 mm - l  
T = 293 (2) K 
Prism 
0.35 x 0.25 x 0.20 mm 
Colourless 

0max = 24.98 ° 
h = 0---~ 8 
k =  0---* 9 
l = - 19 ~ 19 
3 standard reflections 

every 150 reflections 
intensity decay: < 1% 

w = 1/[crZ(Fo 2) + (0.027P) 2 
+ 0.48P] 

where P = (Fo 2 + 2Fc2)/3 
(A/O')max = 0.001 
Apmax = 0.36 e ,&-3 
Apmin = -0.23 e ,~-3 
Extinction correction: none 
Scattering factors from 

International Tables for 
Crystallography (Vol. C) 

Supplementary data for this paper are available from the IUCr 
electronic archives (Reference: BMI162). Services for accessing these 
data are described at the back of the journal. 
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Table 2. Selected geometric parameters (,4, o) for (2) 
SI--NI 1.645 (3) N I---CI 1.291 (4) 
S 1----C5 1.760 (3) C1---C4 1.469 (4) 
OI--CI 1.311 (3) C2--C3 1.481 (5) 
O1----C2 1.466 (4) C4---C5 1.384 (4) 

NI--SI---C5 96.46 (13) O1---C2----C3 107.4 (3) 
C1--O1---C2 116.3 (2) C5--C4---C 1 109.0 (3) 
CI--NI--SI 109.0 (2) C4----C5--S 1 107.1 (2) 
NI---CI--OI 123.8 (3) C8---C7--C6 121.1 (3) 
N 1-----421---C4 118.4 (3) C9--C8---C7 121.5 (3) 
O 1--C1--~4 117.8 (3) C4---C9--C8 117.8 (3) 

For both compounds, data collection: MSC/AFC Diffrac- 
tometer Control Software (Molecular Structure Corporation, 
1995a); cell refinement: MSC/AFC Diffractometer Control 
Software; data reduction: TEXSAN (Molecular Structure 
Corporation, 1995b); program(s) used to solve structures: 
TEXSAN; program(s) used to refine structures: SHELXL97 
(Sheldrick, 1997); molecular graphics: TEXSAN; software used 
to prepare material for publication: SHELXL97. 
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Abstract 
3-Aminopyrazole-4-carboxyl ic  acid, C4HsN302,  crystal- 
lized in the non-centrosymmetr ic  space group P21 in the 
zwitterionic form. Intermolecular  N - - H . . . O  hydrogen 
bonds with N . . . O  distances of 2.768 (2) and 2.747 (2) A 
link molecules into two sets of chains propagating along 
[1 i0]  and [110]. The two sets of chains are crossl inked 
by strong hydrogen bonds. A complex network of  
hydrogen bonds ensues. There is a single intramolecular  
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